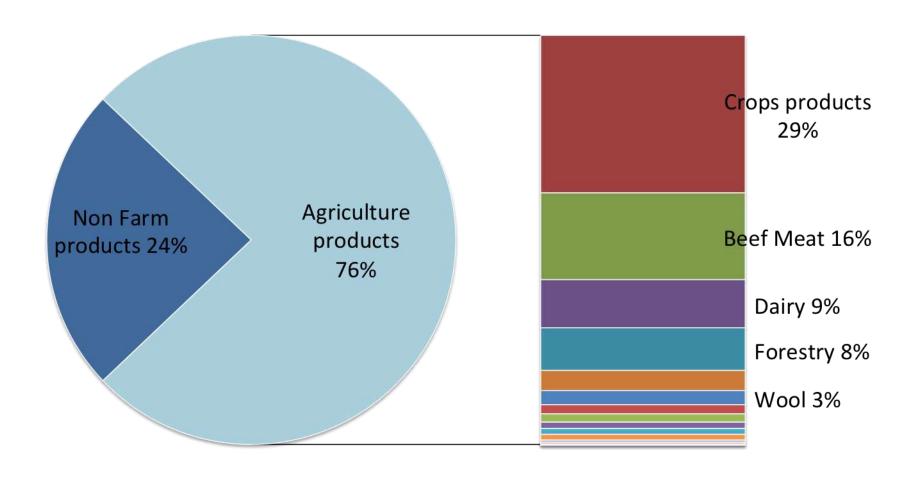


Experiences in the use of genomics in ruminants in Uruguay

Ignacio Aguilar

Instituto Nacional de Investigación Agropecuaria
Uruguay

INIA Research Team


- Olga Ravagnolo
- Elly Navajas
- Gabriel Ciappesoni
- Mario Lema
- Virginia Goldberg
- Rodrigo Lopez
- Fernando Macedo
- Maria I. Pravia
- Pablo Peraza

Uruguay

Agro-exporting country

Livestock production

- 11.8 m
- 1070 k ton meat

Dairy cattle

- 770 k animals
- 440 k cows
- 2200 mil lt

- 7.4 m
- 60 k ton meat
- 30 k ton whool

Livestock genetic improvement

National genetic evaluations

- Beef Cattle
 - Hereford
 - Angus
 - Braford
 - Limousine
- Dairy Cattle
 - Holstein
 - Jersey

- Sheep
 - Corriedale
 - Merino
 - Polwarth
 - Merlin
 - Romney Marsh
 - Texel
 - Hampshire Down
 - Ile de France
 - Poll Dorset
 - Highlander

Animal Genomic DNA Bank INIA Las Brujas

Animal Genomic DNA Bank

 Integrated technology platform to implement genomic and other "omics" research projects

 Base for the generation of training populations for genomic selection in sheep, beef and dairy cattle

Animal Genomic DNA Bank

Breed	Number of samples	Population type
Merino	~ 4700	Stud/Research
Corriedale	~ 3800	Stud/Research
Texel	~ 800	Stud
Angus	~ 2000	Stud
Hereford	~ 4900	Stud
Holando	~ 2000	Stud/Commercial
Creole	~ 400	Research
Other Breeds	~ 2000	Research

"SNP Assisted Breeding" for Sheep extensive systems

Very Low Density SNP panel: Development

VLD SNP panel: development

SNPs	Purpose	reference	
250	INIA Parentage preselected (50k)	INIA Project (+ ANII)	
69	ISGC Parentage	Kijas et al., 2012	
2	Horn/Poll	Dominik et al. 2011; Johnston et al. 2011	
174	FEC associated (16 from 50k)	INIA Project	
7	Merino Breed specific	INIA Project (QC, population genetics,	
5	Corriedale Breed specific	crossbreeding, prolific, etc.)	

Parentage SNPs: Uruguayan panel

Panel	n	Criteria
1	83	Min No PE of 0.9999 for Corriedale, Merino and Texel
2	96	P1+7 rare SNP (>0-0.1) and 10 SNP MAF 0.1-0.4
3	141	P2+ Kijas et al., 2012 (pass QC citeria)
4	154	P3+ FEC (pass QC criteria)
0 Total	258	P4 + others parentage SNP

Panel	Corriedale	Merino	Texel	
1	0.9999033	0.9999099	0.9999045	
2	0.9999871	0.9999961	0.9999497	
3	0.9999999	0.9999999	0.9999992	
4	0.9999999	0.9999999	0.9999997	
0 – Total	0.9999999	0.9999999	0.9999999	

FMV_2_2011_1_6356

$$P = 1 - 4\sum_{i=1}^{n} p_i^2 + 2\left(\sum_{i=1}^{n} p_i^2\right)^2 + 4\sum_{i=1}^{n} p_i^3 - 3\sum_{i=1}^{n} p_i^4$$

PE: combined exclusion probability according to Jamieson & Taylor, 1997

Merino Breeding Nucleus

Results Merino Breeding Nucleus (2015)

2 Dic 15: 200 samples sent to USA. (100 lambs, 9 sires, 91 dams)

7 Dic: samples arrived to USA

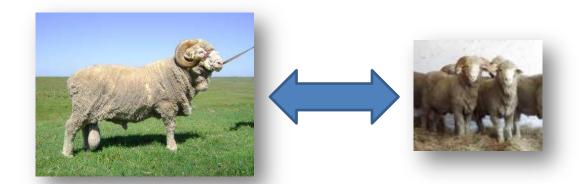
14 Dic: Affymetrix send genotype data.

16 Dic: Parentage verification and horn/poll

17 Dic: first distribution of ram with DNA parentage verification.

Call rate = 0.9937

13 samples fail (9 in the same plate)



Parentage SNP: Errors of assignments

Parentage assignments (Sire-lamb): % error (No of pairs) by breed and stud

Breed		A	В	C	D	Ш	F	G	NUG
Corriedale	% error	15.7	0.0	0.0	16.7	16.6	14.0	3.2	
Corriedale	n	51	7	28	6	139	43	63	
Marina	% error	5.0	4.9	4.8	6.3	11.0	0.0	66.7	6.3
Merino	n	40	41	21	112	73	22	6	223

Opportunities for the VLD SNP panel

cheap sheep chip

- 1. Improve genetic gain: parentage verification
- 2. Increase Ram price by "parentage certified stamp"
- 3. Official use for pedigree animals (ARU)
- 4. Increase Ram price by "Poll allele stamp"
- 5. Reduce cost of labor (parentage assignment in field)

Hereford Breeding Programme

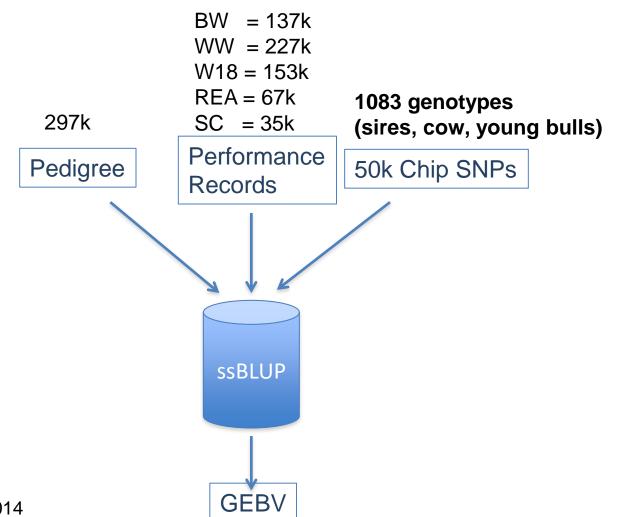
- > Genetic evaluation system in place
 - 280 thousands animals in the current database,
 350 studs
 - Per year: 10000 new animals of 160 studs
- > Member of the Pan-American genetic evaluation
- Twice a year Expected Progeny Differences of breeding animals are published and available for several relevant traits
 - Birth, weaning, 15-month and 18-month weights
 - Cow adult weight and milk
 - Eye muscle area and fat depth by ultrasound
 - Scrotal circumference
 - Selection index cow-calf operation

International Hereford Project

- ❖ Sociedad Criadores de Hereford del Uruguay
- ❖ National Beef Cattle Evaluation Consortium (USA)
 - ❖ Asociación Rural del Uruguay
- Instituto Nacional de Investigación Agropecuaria

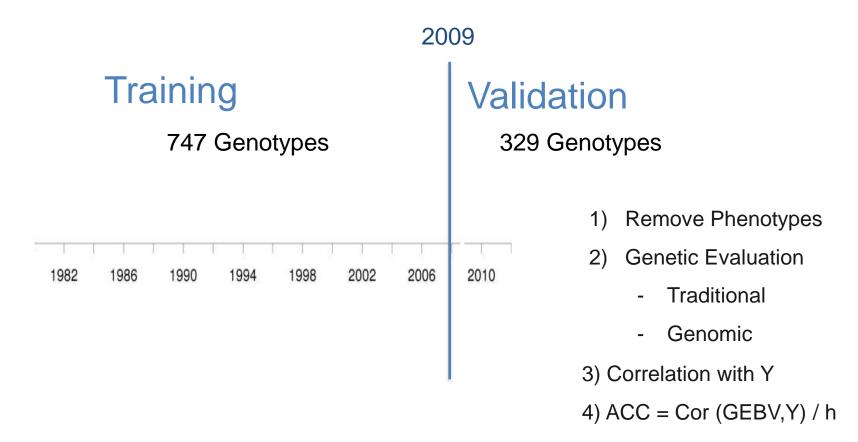
Build a training population for genomic selection in Uruguayan Hereford

Validation of prediction equations from PanAmerican training population

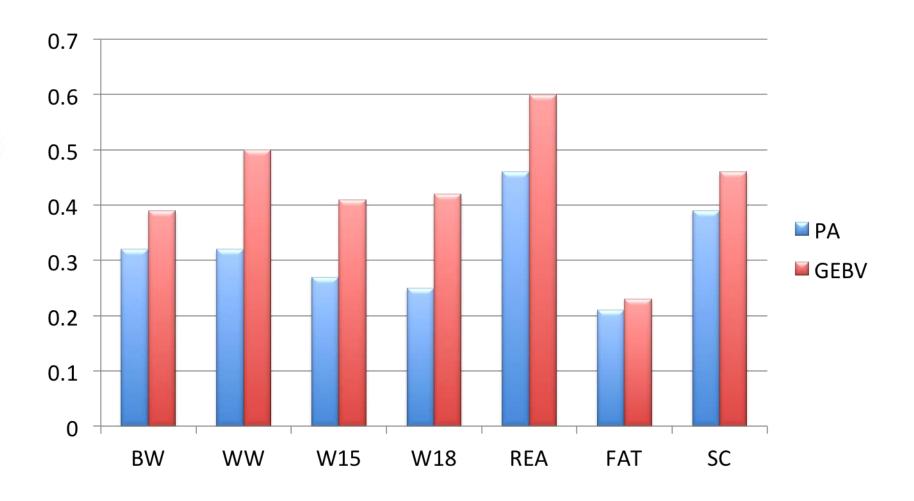


Uruguayan Hereford Genomic Population

- ~ 1100 Hereford animals (males & females)
- Colaboration:
 - Hereford breeders
 - Hair, blood and semen samples from high accuracy sires
 - 16 Hereford Studs
 - Young bulls from generation 2010 + sires
 - Al companies
 - National Herd-Book (ARU)
 - Hair samples. Agreement ARU INIA



Genomic predictions - Hereford Uruguay Single Step GBLUP



ssGBLUP Hereford Uruguay Cross Validation

ssGBLUP Hereford Uruguay Cross Validation

PanAmerican Genetic Evaluation

❖Official GE-EPDs for Uruguayan Hereford since August 2016

❖ Genomic predictions available for breeders for next evaluation December 2016

Industry adopting the technology

Genetic improvement: feed efficiency & carcass quality

- **➤** Genetic improvement by "traditional" selection limited because of:
 - Difficulties and high cost of data recording
 - Longer generation interval (i.e. progeny testing for carcass and meat quality)
 - Low selection intensity due to low number of animals with data for any of these traits
- Genomics in animal selection

- Integration of genomic information into genetic evaluation :
 - Increase genetic gain by higher accuracy at early ages
 - Animals with EPD estimated using genomic information

Building training (reference) populations

Enhancing competitiveness of the Uruguayan beef industry by implementing genomic tools to genetically improve feed efficiency and carcass quality of Hereford breed

> Three years project:

> Jan 2014 − Jan 2017

Consortium of public and private organizations

- 25% Hereford Breeders
- 35% Other institutions
- 45% National funding

Hereford Breeders Association

Rural Association

National Agriculture Research Institute

Ministry of Agriculture

National Meat Institute

Biological Research Institute

Feed efficiency

TRAINING PO	PULATION FEED EFFICIENCY		YEARS		
ANIMALS			2016		
BULLS	Adaptation	Test 1	Test 4	Test 7	
autumn	Warm-up	50 animals	49 animals	45 nimals	
calving	TEST	11 herds	11 h		
BULLS	Adaptation	Test 2	Test 5		
spring	Warm-up	120 animals	6261	Hereford ar	nimals
calving	TEST	39 herds	Sired	l by 200 bu	lls .
	Adaptation	Test 3	4	•	(
STEERS	Warm-up	113 animals	y	n 60 breedii	ng '
	TEST	5 herds	h	erds	

- Animal age
- By origin: from at least two sired
- **Bulls:**
- ✓ in genetic evaluation
- ✓ with birth and weaning weights
- > Steers:
 - ✓ pedigree sires in genetic evaluation (confirmed by DNA)

Close to the target of 1000 animals

Good representation of herds in genetic evaluation
Linked to Hereford population

ASSOCIATION March

2016

Canada – Uruguay Collaborative Project on Feed Efficiency

OBJECTIVES

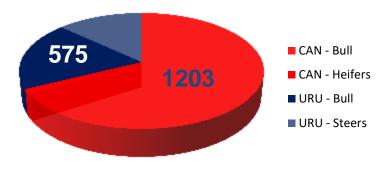
International genetic evaluation
Integration training populations
Genomic associations studies

PRODUCTS

Estimated Progeny Differences

Genomic EPD

Significant genome regions


Joint databases

- Phenotypic records of purebred animals
 - Similar test trials protocols

Pedigree data

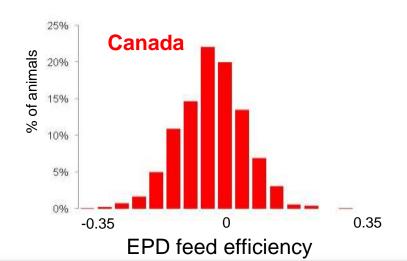
- Unification of databases using international animals ID
- 4 generations of animal with feed efficiency records
- > ~ 7000 animals (CAN+UY)
- Need to improve genetic connexion

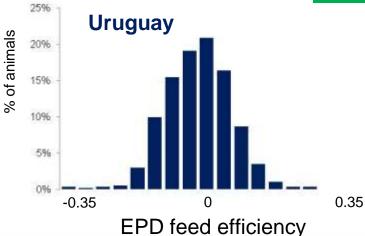
Feed efficiency phenotypes

Canada – Uruguay Collaborative Project on Feed Efficiency

OBJECTIVES

International genetic evaluation
Integration training populations
Genomic associations studies


PRODUCTS


Estimated Progeny DifferencesGenomic EPD

Significant genome regions

- > Data analysis
- Calculation of residual feed intake (RFI)
- Estimation of Expected Progeny Differences (EPD)
 - > First step: feed efficiency as RFI
 - Larger database: selection index

Published in August 2016

Canada – Uruguay Collaborative Project on Feed Efficiency

OBJECTIVES

International genetic evaluation
Integration training populations
Genomic associations studies

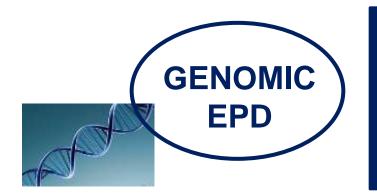
PRODUCTS

Estimated Progeny Differences

Genomic EPD

Significant genome regions

Integration of training populations (genomic data)


➤ URUGUAY: 1000 bulls and steers with phenot

+ 1100 genotypes with genetic ev

CANADA: 400 bulls (700k SNPs) + 1900 bulls ar

2017

Publishing genomic EPDs 4000 CAN & UY genotyped animals

- > Estimated with larger training populations
 - √ Higher accuracies
 - ✓ **Stronger connectivity** between populations
- ➤ Larger number of animals with EPDs and comparable
 - ✓ High selection intensity

Training population

carcass and meat quality

 Steers after feed efficiency evaluation are finished on grass (+concentrate).

• Carcass traits:

- hot and cold carcass weight,
- conformation and fatness grades,
- quarters, primal and cuts weights.

Meat quality:

- meat and fat colour,
- intramuscular fat percentage,
- pH, tenderness (Warner Braztler), and fatty acid profile

TRAINING POPULATION FEED EFFICIENCY					
ANIIVIALS	INTAKE TEST PHASES				
BULLS	Adaptation				
autumn	Warm-up				
calving	TEST				
BULLS	Adaptation				
spring	Warm-up				
calving	TEST				
	Adaptation				
STEERS	Warm-up				
	TEST				

Training population carcass and meat quality

V	TRAINING PO	PULATION FEED EFFICIENCY	
	ANIIVIALS	INTAKE TEST PHASES	
	BULLS	Adaptation	
	autumn	Warm-up	

TEST

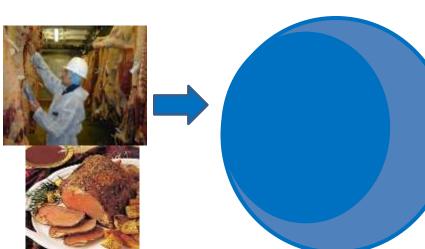
Adaptation

Warm-up

Adaptation

Warm-up TEST **Research project**

- Steers with know paternity
- Progeny from Sires with EPD in National Genetic Evaluation
- Similar slaughter protocols and measures


calving

BULLS

spring

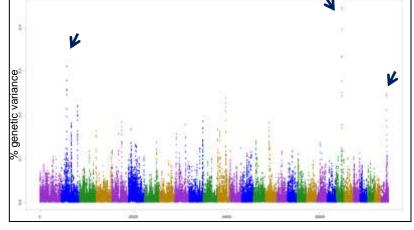
calving

STEERS

TRAINING POPULATION

so far: 755 steers Genotypes 80k / 700k SNP

Training population

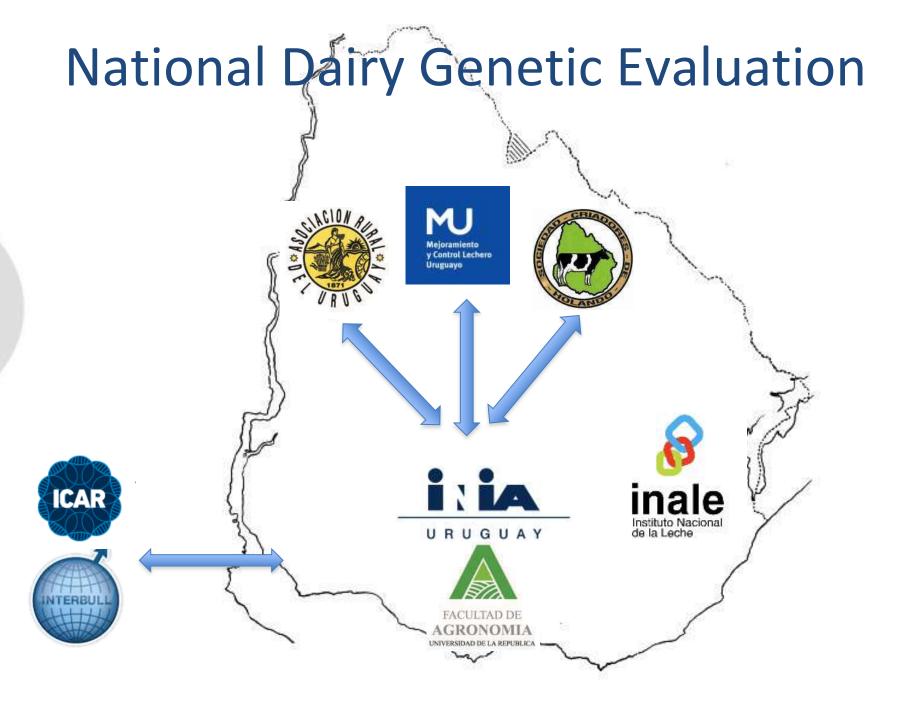

carcass and meat quality

- **Target number for 2017:**
 - 350 + 650 steers (other research projects)
- Aims:
 - Impact on accuracies of genomic EPDs
 - Identification of more relevant genomic regions
 - Better understanding of genetics of traits
 - Identification of markers that explain more of genetic variance
 - Smaller SNP panels (lower genotyping cost)

GBLUP 4-fold cross-validation

TRAIT	n	Accuracy
Carcass weight	510	0.39
Pistola cut	510	0.36
Rump and loin	509	0.34
IMF	486	0.30
Tenderness	506	0.32

Carcass weight

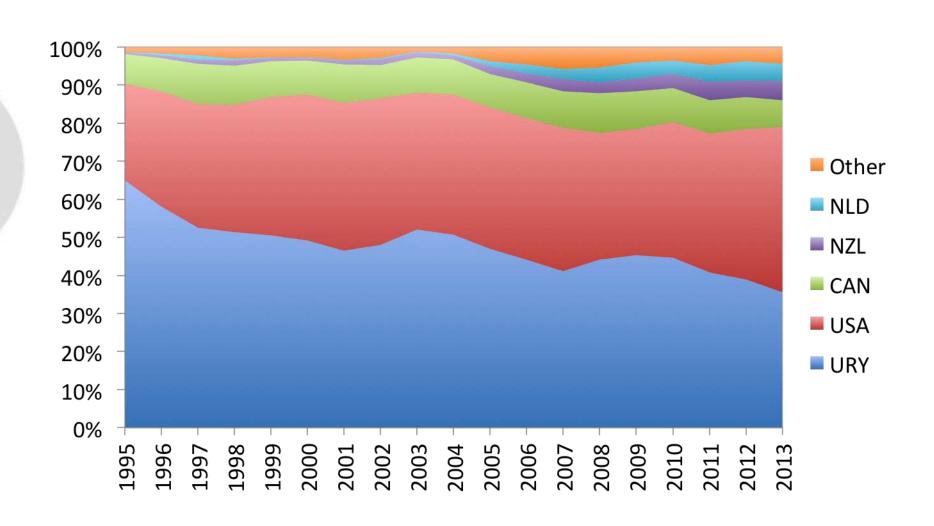


Angus breeding programme

- > Genetic evaluation system in place
 - > 120000 animals in database
 - > 140 herds
 - > 8000 new animals by year
- Expected Progeny Differences of breeding animals are published and available for several relevant traits
 - Birth, weaning and 18-month weights
 - Cow adult weight and milk
 - Eye muscle area, fat depth and intramuscular fat by ultrasound
 - Scrotal circumference

History National Genetic Evalution

- 1994 Productivity: Milk production (Fat)
- 1995 Type traits
- 2003 Productivity: fat and protein
- 2004 Linear type traits.
- 2012
 - Selection index: IEP
 - Interbull MACE evaluations
- 2015
 - Female fertility trait
 - Test Day Model
- 2016
 - Update IEP index (fertility)


Genetic evaluation in numbers

- > 6.3 M test day records
- ~ 340000 cows with records
- ~ 7400 sires with daughter (63 % domestic)

- 925 sires used by Interbull with daughter information in URY
- 85 sires with daughter information only from URY

Cow's sire origin

Incorporation of genomic information in the Holstein national genetic evaluation

- Uruguay current situation
 - Need several years to obtain accurate genetic merit of sires (7-8 years)
 - Domestic sires (~ 30%) generally selected from parental index
 - Imported bulls: Interbull (MACE,GMACE)
 - but domestic bulls potential use genomic

Uruguayan Holstein Dairy Genetic Evaluation

- Prediction of genetic merit in Uruguayan system of production
- More than 20 years of national genetic evaluation
 - Domestic and imported parents with daughters in Uruguayans herds
 - Production and linear traits

- Base for:
 - Integration into international genetic evaluation
 - Training population for genomic selection

Training population

- Proven sires (domestic & imported)
 - limited availability of semen from historical parents
- Most recent sires
 - Al companies and breeders studs
- National Herd-Book (ARU) hair samples from parentage test
- Cows from stud and commercial herds

Training population so far

DNA / Hair samples

- 1277 animals from genetic evaluation
 - **1125** females
 - 152 sires with daughter
 - 76 domestic

 Exploring international exchange (ARG, IRL, BRA, BEL, ...)

In summary

- National genetic evaluation systems in place
- Integration of genomic information into genetic evaluations and delivering genomic proofs in some breeds
- Building training populations for genomic selection
- Undergoing development of genomic EPD for feed efficiency in beef cattle
- Expanding training population for carcass and meat quality traits

Thank you iaguilar@inia.org.uy

